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exact wave function is obtained by three different methods: (i) path-

integral, (ii) second quantization and (iii) dynamical invariant. The

explicit form of the dynamical invariant involves a solution to a
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1. Introduction

In the past few decades there has been extensive effort ( 1 ) to obtain

exact solutions to the Schodinger equation for oscillator systems with time-

dependent Hamiltonians. The path integral formalism of Feynman (2 ) provides

a general approach to quantum systems. In this theory one must obtain the

exact propagator associated with the classical action of a given system.

Provided the exact propagator is obtained, the wave function of the system

can be readily calculated. Even though the solution of the Schrddinger

equation is possible through this method, there remains the problem of

second-quantization, which is important in connection with construction of

the explicitly time-dependent invariant (dynamical invariant) and finding

the coherent states of the system.

Since Lewis and Riesenfeld ( 3 ) derived a simple relation between the

eigenstates of the dynamical invariant and the solution of the Schr6dinger

equation, several authors have employed the dynamical invariant method to

investigate systems with a time-dependent Hamiltonian, including the time-

dependent harmonic oscillator. The so-called Ermakov-Lewis problem and its

generalization have been investigated by the following four methods: (4 ) (M)

exact adiabatic invariants, (ii) time-dependent canonical transformation,

(iii) Noether's theorem and (iv) Lie theory of extended groups. The

dynamical invariant involves an auxiliary function which is related to the

amplitude of the classical harmonic oscillator and satisfies a nonlinear

second-order differential equation (auxiliary equation). Each particular

solution to the auxiliary equation determines the dynamical invariant.



Coherent states were used by Glauber ( 5 ) to discuss the photon

statistics of radiation fields. After that, they have been widely used in

various fields of physics. (6 ) Hartley and Ray (7 ) constructed coherent

states for a time-dependent harmonic oscillator on the basis of the Lewis

and Riesenfeld theory. (3 ) Recently, Yeon, Um and George (8 ) obtained the

exact coherent states for a damped harmonic oscillator with constant

frequency. Quesne ( 9 ) examined the unitary-operator coherent states.
( I0 )

The ordinary coherent states may be defined in alternate, but essentially

equizalent, ways. For example, these states are defined as the eigenstates

of a destruction operator and are also obtained by applying a unitary

operator, consisting of destruction and creation operators, to the ground

state of the system. The coherent states have several novel properties,

including the minimum uncertainty product in position and momentum.

In previous work ( 12 ) we considered a molecular system adsorbed on a

dielectric solid surface, modeled as a damped harmonic ascillator driven by

an external electric field. The induced dipole moment of the adsorbed

molecule obeys the equation of motion

2
x + 7x + W x - f(t)/m , (-I)m -ft/0

where m 0 , and w are, respectively, the mass of the adsorbed molecule,

modified damping constant and modified frequency due to the presence of the

solid surface. The dots denote the derivative with respect to time t, and

f(t) is an external driving force given by

f(t) - g(W',O) cos(W't 0) (1-2)
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where g(w',6) is the amplitude of the driving force, which depends on the

frequency w' of the incident field and on the incident angle defined with

respect to the normal direction to the solid surface, and 0 is the phase

determined by incident and reflected fields. The Lagrangian L and classical

Hamiltonian H corresponding to the equation of motion (Eq. (1-1)) are

ri .2 1 2 2 ]e(
L(x,x.t) - L-m0x - X+ xf(t) e (1-3)

H(x p t) - t [2 e 2 yt + 1 2 20 - xf(t) eYt (1-4)

,,2m 0

where p is the classical linear momentum. Hereafter we shall use the units

(Planck's constant) - m0 - 1.

In Sec. 2.A we review the results of our previous work for finding the

wave function of the damped driven harmonic oscillator within the path

integral formalism. ( 1 2 ,1 3 ) The second-quantization formalism is presented

in Sec. 2.B. The appropriate destruction and creation operators are

defined, and by using these operators we obtain the wave functions for this

system. In Sec. 2.C we use the dynamical invariant method, constructing the

exact invariant by solving the auxiliary equation. The coherent states are

obtained, and their properties are investigated in Sec. 3. In Sec. 4 we

briefly discuss the results and present conclusions.



5

2. Three Methods

A. Path Integral Method

The Hamiltonian operator H(t) corresponding to the classical

Hamiltonian (Eq. 1-4) is obtained by making the replacement p - i x

HA) a2... -2-yt 1 2 x2 (t Y-1H ) 2 ax 2 e + CWmX I e ,(2-1

where x and p satisfy the commutation relation (x,p] - i. In order to solve

the time-dependent Schrodinger equation

Sat^
i e n(x,t) - H(t) i(x,t) m o(2-2)

we follow Feynman's path integral method ( 2 ) and adopt a Gaussian type

propagator K,

K(x,t; x0,0) - A0 exp(-a 1 (t)x
2eYt - a2 (t)xeft/

2 _ a3(t)] , (2-3)

where A0 is a normalization constant and we have used the notation x0 - x(O)

for simplicity. We assume the external driving force to be turned on at

time zero (t - 0), and for t 5 0 the system is described by the damped

oscillator wave function.(8 ) The propagator contains all information about

the system in the time interval [O,t] and satisfies the wave equation

i a - H(t) K (2-4)
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From Eqs. (2-1), (2-3) and (2-4) we obtain three first-order differential

equations for the coefficients in the propagator (2-3). The solutions of

those differential equations yield the explicit form of the

(12,!13)
propagator, 

"

K(x,t; xoO) - [2  snt 2  expLAl(t)x 2 + A 2 (t)x - A 3 (t)x0
2 + A4 (t)x0 ,

L~ isin(wt)] 
(2 5(2-5)

where

AI(t) -2i
e

A2 (t)- iwA(w',O)e t/2 - (t) cos(W't- 0 -) - sin('t-0

A3 (t) - i(t)

t 2i

A "(t) w e x - A ,O) cos (W't-O- )4 i sin(wt)I

6(t) - 2 + cot(wt) (2-6)

1
{232

m 4

A(w',9) - g(w' O W,) 2 - ]

01- tan-l[_Y' /(w m 2 - ,,2)].

represents the reduced frequency, which is assumed to be real throughout

this paper. This implies that we are concerned with the underdamped case,

although the results can be taken over to the overdamped or critical damping

case.
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The wave functions of the system are readily calculated using the

formula

On (Xt) - F dx0 K(x,t; x,0On (x 0,O), (2-7)

where n(X00) is the wave function for a simple harmonic oscillator at t - 0,

n 0'2

I

0 (x 0 ,0) - [ ]2 H (,x 0) exp Wx2 (2-8)

and Hn is the usual Hermite polynomial. Substituting Eqs. (2-5) and (2-8)

into Eq. (2-7) and performing the integration, we obtain

1.
n(x,t)- [ D 12 exp[_Bl(t)x2 + B 2 (t)x - B3 (t)SL2nn1 23

- i(n+l)cot-1 ((t))J HnD(t)lx-E(t)IJ (2-9)

where

1

D(t) - {weYt/ (t)}2

E(t) - A(w',O) cos(w't - 0 1)

B (t) -i D 2(t) {I + i (t)}
1 2 2
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B2 (t) - D2 (t)E(t){l + i 3(t)

(2-10)

Bl(t) - iD2 (t)E 2 (t) { + i(t)

- sin2 (wt) {i1 +2

IW

l3 (t) Yt) - t) tan(w't 0 " -

Hereafter, we shall use the notation D - D(t), E - E(t), .. 3

3 (t) and - (t) whenever there is no ambiguity. We note that there exist

useful relations between coefficients in the exponential terms in the wave

function,

I* .2 * 2 * D22

B + B -D , B + B2 - 2D E, B + B -DE , (2-11)
1 1 2 2 ' 3 3

which will be used in later calculations.

B. Second-quantization method

To implement the second-quantization formalism for the damped driven

harmonic oscillator, we introduce the time-dependent annihilation operator

A(t) and creation operator at(t)

a(t) - u(t) 1 2B 1 x + ip - B2 1

(2-12)
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at(t) L u (t)2BIx- ip- B,

where

u(t) - u0 (t) eiy(t)

Uo(t) " t (2-13)
u0( 2D(t)

y(t) - cot- ((t))

x and p are the canonically conjugate coordinate and momentum such that

[x,p] - i, and BI, B2 and D are all given in Eq.(2-10). It is obvious

through Eq. (2-11) that the non-Hermitian operators a(t) and at(t) satisfy

the commutation relation

[(t), t(t) - 1 (2-14)

Thus we set

a(t)ln,t> - 00 2.n-l,t>

a (t) In,t> - _n+1n+l,t>

a(t) 10,t> - 0 (n - 0,1,2,3 ...) (2-15)
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The state vector In,t> implies that the quantum state depends on the quantum

number n and time t. Even though the definitions of a(t) and at(t) in Eq.

(2-12) are correct, it is more convenient to introduce a new function for

later calculations,

7 (t) - u(t) B e- (2-16)

m

Then, the time-dependent operators a(t) and a (t) are rewritten as

-(t) - 2i e ?7(t)(x-E) - u(t) e- I {p + 4(t)
m

(2-17)

at (t) - h e7t (t)(x-E)

where

4(t) - D 2E ( 2-3) (2-18)

From now on we use the notation a - a(t), At - at (t), u - u(t), etc. x and

p are expressed in terms of a and at as

x-E+ u + ut

m

(2-19)

P --4 + -2 e t (17*a + 17t)



Substitution of Eq. (2-20) into (2-1) gives the second-quantized expression

of the Hamiltonian operator H(t),

H(t) - e 2. (2at + 1) + a+)ata

+ [L2E f(t)] - YK 4e t)at + h.c.] + G(t)
m

G(t) - e-yt[lw2E2 + 1 e 2 -yt - Ef(t)] (2-20)

where h.c. implies the Hermitian conjugate.

The ground-state wave function in the coordinate representation,

0 (x,t) - <xlO,t>, is readily calculated using the definition of A in Eq.

(2-12) and AJO,t> - 0. The normalized form is

1

(x~t) - [7D12 exp.B x 2 + B x - B3 - i ) (2-21)

which corresponds to Eq. (2-9) when n - 0. The n-th state wave function

n(Xt) is obtained through

n i
(X,t )  _ 1(it), 0(X,t)  (2-22)

With a as defined in Eq. (2-12), we readily obtain

( a t ) - { i lu n 2 B X . - B 2 }

mWx
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{ x exp exp-Bx + Bx] (2-23)

Substituting Eqs. (2-21) and (2-23) into (2-22) and performing some

calculations using Eq. (2-11), we obtain

0n(Xt) - (- 1 ) n exp B 2+BB i(n )y(t)] 2 2 (2-24)

where z - D(x-E), and the Hermite polynomial function is expressed as

2 2

H (z) - (-l) e 2z n e 2 (2-25)
n a

Then the wave function in Eq. (2.24) is exactly the same as Eq. (2-9). It

is easy to show that ik (x,t) has the orthonormal property,

<0M(X,t)jln (xt,)> - <m,tln,t> - 6 (2-26)

C. Time-dependent operator method

For the system characterized by the time-dependent Hamiltonian H(t)

[Eq. (2-1)), we assume that there exists a Hermitian operator I(x,p,t) which

is explicitly time-dependent and satisfies the invariant condition

A A

d. A a,~ I A 2 7
I + [I,H] - 0 (2-27)

dt at i

By operating on the left-hand side of Eq. (2-27) with the time-dependent

Schrodinger state vector I> which satisfies the wave equations
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A

'at l> s - H(t)l>s (2-28)

we obtain

aAi at-j H~)I> (2-29)

This means that the operation of the invariant on the Schrodinger state

vector yields another solution of the Schrodinger wave equation. (14) Now,

we assume that the time-dependent invariant operator has the form (2 )

Ai i~, 2 2
I(x,pt) - 2 1 (t)x + 62 (t)(xp+px) + 63 (t)p + 64 (t)x

+ 65 (t)p + 66 (t)] , (2-30)

where the 6.'s are all real functions of time and do not involve time-
I

differential terms. Applying Eq. (2-30) to (2-27), we have six differential

equations for the 6.'s,

-262 2 eYt - 0 (2-30-1)
22 -T

+ 6 e 6 w 2 e7t - 0 (2-31-2)
2 1 3 m

3+ 26 2e- Yt - 0 (2-31-3)

6 + (262f " 5w 2) e -f " 0 (2-31-4)

65 + 64 eYt + 263f e -Yt 0 (2-31-5)
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6 + S5 f e t- 0 (2-31-6)

where the dots represent partial derivative with respect to time.

To solve the above equations, we write

63 (t) - p (t) e (2-32)

where p(t) is a real function of time which will be determined later.

Substituting Eq. (2-32) into Eqs. (2-31-3), (2-32-2) and (2-31-1), we get

6()- [.2 + p {p - -y + w2} e'~t (2-33)

where p(t) obeys the nonlinear differential equation

so 2 -3
p + pp , (2-34)

and w is the reduced frequency defined by Eq. (2.6). Any particular

solution of Eq. (2-34) can be used to construct the invariant I(x,p,t). It

is straightforward to show that

p(t) - ey /2 /D(t) - W1 ) 2  (2-35)

is a particular solution of Eq. (2-34), where D(t) and pl(t) are defined in

Eqs. (2-10). Inserting this solution into Eqs. (2-31), we obtain
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2 2
51(t) - D2[1. + 1

(2-36)

52(t) - £2 2w 1 1

Substitution of Eq. (2-36) into Eqs. (2-31-4) and (2-31-5) yields a

nonhomogeneous differential equation with constant coefficients,

i+ -f; 5 W 25 [ + {-y£.l I 3£i+fl/ (2-37)

the solution of which is

65 (t) - -2E 3 ' (2-38)

where E(t) and £ 3 (t) have been defined in Eqs. (2-10). Again, substituting

Eq. (2-38) into (2-31-4), (2-31-5) and (2-31-6), we obtain

4 (t) - -2D 2E (1 + 2 3 )

(2-39)

6(t) E2 (1 + £3)

We have determined all coefficients in Eq. (2-30). Thus the invariant
A

operator I can be explicitly written as

A 2 )2 p2
I(xp,t) - - D2(x-E)2 + JD(t) 2x + - DE£3  (2-40)

To obtain the operator form of I, we introduce the two operators
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a0(t) - W U0 (t) (2B1x + ip - B2)
m

(2-41)

a o(t) - W Uo(t) (2B1x - ip - B2)
m

where u0 (t) is defined in Eq. (2-13). We note that a0 (t) - a(t)e and

a0(t) 0 at(t)e '. Equation (2-40) is expressed in terms of 0(t) and

aO(t) as

0I

I(t)2 (2-42)

Obviously, %o(t) and at(t ) satisfy the same commutation rule as a(t) and

at (t), i.e.,

[to(t), - I . (2-43)

Therefore, we can write

a0 (t)In,t> I =- n-l,t> I

ao(t)In,t>I - ,-iIn+l, t> 1  (2-44)

a0 (t)In,t>I - 0 (n - 0,1,2,3 ....)

A

Here we assume that the eigenfunctions 0n (x,t) - <xln,t> of I form a

complete orthonormal set corresponding to the eigenvalues A . Then we haven
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A

10n(X,t) X non(X, t)

A L I - (2-45)
n 2

Even though the eigenfunctions of I are time-dependent, the eigenvalues are

time- independent. (3)

In order to obtain n(x,t), we first obtain the normalized form of

k0 (x,t) using the explicit expression of A0(t) in Eq. (2-44),

1

0 0[x,]) 2 exp [_ B 1x2 + B 2x - B 3 ] ,(2-46)

which is the same as 0 (x,t) except for the y(t) term in Eq. (2-21). The

eigenstate n (x,t) can be obtained by applying A0(t) n times successively to

0 (x,t). Through the same procedure for obtaining Eq. (2-24), we get

I(xt) a n (xt)

- [ 2n J2 exp [Blx2 + B2 x - B3] Hn[D(x-E)] (2-47)

Now the solution, n (x,t), of the Schr6dinger wave equation can be

obtained from
( 3 )

ian(t)

n (x,t) - e n (X,t) , (2-48)

where the phase function n(t) is the solution of the equation
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d (t)
dt <n Ii -t > (2.49)

The diagonal matrix element of with respect to the eigenvector In,t> I ofat
I is obtained by taking the partial time derivative of at(t) in Eq. (2-44)

0

and operating taking a scalar product:

i<n, tIIL In, t>I - <n-l,tla-ln-l,t>i + - I<n'tl-aa Inln't>l

= (<0,t 1ot>1 + ._ 1<ntL-T n-l,t> . (2-50)

In obtainin the second line in Eq. (2.50), we have used a recurrence
a'a0

relation. - is easily calculated from Eq. (2-41) asa ..
-r2ielt

a0 2i {7tuu 
A4,1

at - e + 0 0 0 +

- i U0 4 + W ?70 L et (2-51)

m

where qo(t) is a function which is obtained from Eq. (2-16) by making the

replacement u(t) - u0 (t). Thus, Eq. (2-50) becomes

<nt-n,t>- <0 tl '0,t> + n - + 21 e dUoo + .o(-YU-u)
I at' I I'at'' 17o Woo0o0

(2-52)

<o,tla 1,t>, gives the zero-point contribution to Eq. (2-52), which is

at Ip
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<0,tI 0t> - 2j- + --1 {u 0;* + 10 (Yu0-u0 )  (2-53)
m

Using the definition of u0 (t) and n 0(t) and Eqs. (2-10), we obtain

+ 0 (-Yu0 -u0) -- e 2 + m e t222 i (2-54)

Substitution of Eqs. (2-53) and (2-54) into (2-52) yields the diagonal

matrix element of i a,

t<n'ti at nt>I - (n+fl 2 + ) 2  (2-55)

I at 22t)

Now we can express the Hamiltonian H in terms of a (t) and a0(t) by

making the replacements u(t) - u0 (t), n(t) - n 0(t), a^(t) - a0(t) and At(t)

a0(t) in Eq. (2-20). By this manner we obtain the diagonal matrix element

of H as

<n,tlHln,t>1 - 2 n + 1u2 + 117012 )e + G(t) (2-56)

Here, we note that the G(t) term in Eqs. (2-20) and (2-56) does not have any

effect on the dynamics of the system. Therefore it is always possible to

remove this term. In later calculations, we neglect this term.

Since p - ( I/W) is the solution of the auxiliary equation (2-34),

this equation can be written in the equivalent form

2 
-2

+ i (2-57)
8w 2 wl -8w 2[i
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In obtaining the above equation we have used the identity

.o 2
4 +2 + 

. _2 , (2-58)
1 2 - W C

which is easily verified by using Eqs. (2-10). With use of Eq. (2-57) we

obtain

12 +  2 _ 2 u02 + 1170l 2) (2-59)
2 2 +72 ( 0 -

Using these results, we finally obtain

d(t) [1
da -- n + 1!6!- 

(2-60)
dt 2 -1

To integrate the above equation, we use

0 y -(2-61)

which is verified by using the definitions of pl(t) and y(t). Thus we

obtain

a (t) - (n + I) cot -l [ (t)] + constant (2-62)

where the constant gives a constant phase in the wave function n (x,t), and

can thus be neglected. Substitution of Eq. (6-62) into (2-48) yields the
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Schrodinger wave function, which is exactly the same as Eqs. (2-9) and (2-

24). Thus, we have shown that the three methods described in this section

yield the same wave function.

3. Coherent states

In this section we obtain the coherent-state wave function by means of

three equivalent definitions and show that the coherent states correspond to

minimum uncertainty states. We define a coherent state Ia,t> as the

eigenstate of a(t) corresponding to the eigenvalue a,

a(t)la,t>- Qlat> , (3-1)

where a is a complex number and a(t) has been defined in Eq. (2-12) or (2-

17). Equation (3-1) can thus be rewritten in the coordinate representation

as

12 u(t) 4 2B (t)x - B2(t) + 1 <xla,t> - a <xla,t> (3-2)
W 1 2 ax

Oa (x, t) <X Ixa, t>

-N(t) exp[-Blx2 + B+ } x (3-3)

where N(t) is a normalization factor. Through the normalization procedure

we obtain
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2 2*

(X,t) D -u 2 exp B + B +=D -2u x - Bp {1uu 2u

- DE' 2u (3-4)

* 2iy() -1

where we have used the relation u/u = e = exp(cot I(t)] The wave

function a (x,t) can be obtained through the second definition of the

coherent states such that

(x,t) = exp[aa (t) - aa(t)] I 0 (x,t) (3-5)

where 0o(xt) is the ground-state wave function given by Eq. (2-21). Thus

exp[aat-a*] plays the role of a displacement operator. If we use the

identity

*^ 22

aa -a a ea -a* l /2 (3-6)e - e e e,

equation (3-5) can be rewritten as

e-xal)2-/2" a n2/2

a xl)n! (at)n 0(xt)
n-0

(3-7)

- e-la 2 /2 a n
2 n- , O n(x 't )
n-0
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where we have used Eqs. (2-15) and (2-22). Eq. (3-7) can also be used for

the definition of the coherent states. Since V)' (x,t) is given by Eq. (2-9)

or (2-24), Eq. (3-7) becomes

V (x, t) FLru j exp [B x2 + B 2x -B 3  a 2 l---a2u--n/2

n-O

x H nD(x-E) 1  (3-8)

The summation in Eq. .3-8) can be easily carried out by use of the expansion

of the Hermite polynomial H nn

CO [ F~ 2 * 112u * 3 -9
I [ u 2 Hn[D(x-E) ] - exp aD(x-E) 2u*/u -

n-O

Substitution of Eq.(3-9) into (3-8) yields Eq. (3-4). Thus we have shown

that three definitions of coherent states [Eqs. (3-1), (3-5) and (3-7)] are

equivalent. Here we note that when there is no driving force (i.e., f - 0,

E - 0), the coherent state wave function [Eq. (3-4)] is reduced to that of

the damped (not driven) harmonic oscillator,
( 1 5 )

(x2t * 1 D. 2*
(xut) --u 4 exp [BIX2 + D j2u 2u*] (3-10)

We now show that the coherent state vectors form a nonorthogonal

complete set:
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<a',tIt> - f dx <a,tfx><xj8,t>

- e 2 2 dx 0n(x,t) 0 (X,t)

n-O m-O

- ex p[2 {a-012 + (aO a a0f)] (3-11)

Here we have used the orthonormality of n (x,t) given by Eq.(2-26). Since

In

Eq. (3.11) has nonzero values for a o 0, the states are not orthogonal, but

as ac-3I 2 _ w the states become orthogonal. However, the completeness of

the coherent states is easily proved:

1 f d 2 a jat> <a,tl

1 \ \ Int><m,"I ro 2 o,~~ o-,o
l' /n t < fn m d 2a (a )n (a)m e - a

n-O m-O

- Int><n,tI
n-O

l [d 2

- a - d(Rea).d(Ima)] (3-12)

Here a polar coordinate a - aleie has been used at the intermediate stage

of the calculation, and 1 means the unit operator. From Eq. (3-11) we

easily obtain
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,t> - f d2  a,t> exp [Z(Ii2 + ,M 2) + (3- 13)

This means that the coherent states are not linearly independent of one

another. Even though these states form a complete set, there are more

states than are necessary for expanding any given state in terms of the

coherent states. In this sense, these states are said to be "overcomplete".

The coherent states correspond to the minimum uncertainty states, and

thus we can show easily the following relation:

1 2 ;

Equation (3.14) is the minimum uncertainty corresponding to the ground

state.

We now show that the coherent states, which are eigenstates of the

destruction operator defined by Eq. (2-12) [or Eq. (2-17)], give the exact

classical motion for the damped driven oscillator system. The calculation

of the position of the wave packet yields

<,tlxla,t> - e- t/2F(,a* ) e i~t + F (,*) eiwt]

g(W',O)cos(W't-0 0-01 )

S +2 22 )2

m

(3-15)

F(•,a ) *

where we have used the explicit expression for u(t) from Eq. (2-13),
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M--yt/2 iwt
u(t) - e sin(t) + e (3-16)

which is readily obtained by use of the identity

n

exp[±in cot- l((t))] = [t)+i]2 (3-17)

where (t) - + cot(wt) [see Eq. (2-6)]. On the other hand, the classical
2w

solution of the equation of motion for the damped driven harmonic oscillator

[Eq. (1-1)] is given by

Xl(t) - e-yt/2 [A e iwt+ A2 eiwt + g(W'2)cos(2't-00 -01) (3-18)

1 LI + eW 2_2 )22 + (-Ywp'
m

4. Discussion and conclusions

We have considered a molecule adsorbed on a dielectric solid surface,

modeled as a damped harmonic oscillator forced by a time-dependent electric

field. The exact wave functions of this system have been calculated by -

three different methods. These methods yield exactly the same results.

When there is no external perturbing force, the wave functions naturally

reduce to those of a damped harmonic oscillator. Furthermore, when there

exists no damping, the wave functions become the time-dependent wave

functions for a simple harmonic oscillator. In this sense, we can say that

we have obtained the general wave function for a harmonic system.

The Hamiltonian in Eq. (2-20) has off-diagonal terms since the

representation defined by Eqs. (2-15) does not diagonalize this operator.

When there is no external driving force, Eq. (2-20) becomes
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* ,t [(ruj2+i, ) (u2+n2) tgt + (u*2+n*2)

H - e' juII7)(2Aa a + 1) + (u+~)a +( 1 aaj (4-1)

The above equation has the most general form for a Hamiltonian which

preserves the coherence of an arbitrary initial SU(1,) coherent state.(
16 )

Thus this Hamiltonian can be used to describe the dynamics of the SU(Il)

coherent states of a damped oscillator. When there is no damping the

Hamiltonian in Eq. (4-1) becomes that of a simple harmonic oscillator. In

iW0t 1 i0t
this case, we easily obtain u(t) - 2 e 0 -2 o e 0 Then we

A -^t^ I.
have H - w 0a a+-). Therefore, we can say that Eq. (2-20) is the general

form for the Hamiltonian of a (damped, driven) harmonic oscillator system.

To obtain the explicitly time-dependent (Hermitian) invariant

operator, we have assumed the form of the invariant to be expressed by Eq.

(2-30). The same type of invariant was used by Khandekar and

Lawande ( 1 4 ) for a damped driven oscillator with a time-dependent frequency.

When the frequency of the system depends on time, the auxiliary equation

necessary for constructing the invariant should be solved numerically. For

the constant frequency case like ours, the auxiliary equation (2-34) is

easily solved. The particular solution to Eq. (2-34) is given by Eq. (2-

35). With this solution we obtain the explicit form of the dynamical

invariant, Eq. (2-40). When there is no driving force, Eq. (2-40) can be

written as

I- e f+ - x( - ep)e e

This equation agrees with the result of Pedrosa
( 1 7 ) and is somewhat

different in form from that of Korsch. (18) Here, we point out that for a

given equation of motion there can be various kinds of auxiliary equations.
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Hence, a given Hamiltonian can have many different dynamical invariants. Of

course, the same physical results must be obtained regardless of which

dynamical invariant is chosen. For the case of no damping, Eq. (4-2)

becomes the so-called Ermakov-Lewis (1 9 ) invariant for a harmonic oscillator,

if- (2t 2 + (ppxP)21 (4-3)

The operators A0(t) and a6*(t) in Eq. (2-41), which were used to diagonalize

the invariant I [Eq. (2-42)), are the same as 9(t) and a (t) in Eq. (2-12)

exce-t for the phase factor. Therefore, the phase function a (t) in Eq.t, n

(2-49) is readily obtained with use of Eq. (2-20).

The coherent states defined as eigenstates of the operator a(t) form a

nonorthogonal (over)complete set and correspond to the minimum uncertainty

states. The coherent states can be defined in equivalent ways as described

in Sec. 3. The product of uncertainty in position and momentum has a

periodic characteristic with period w/w. The uncertainty product in the

damping oscillator system is not affected by the external perturbing force.

For the - - 0 case, the uncertainty product has a minimum value of . The

coherent states obtained satisfy the Schr6dinger equation and give the exact

classical motion of the damped driven oscillator system.
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